Wind Speed Calculation

19.7. Wind Speed Calculation#

This notebook demonstrates using a MetPy calculation function to compute a wind speed, save it as a new varaible, and add it to the Dataset for plotting purposes.

Import Packages#

from datetime import datetime, timedelta, time

import metpy.calc as mpcalc
from metpy.plots import declarative
from metpy.units import units
import xarray as xr

Get Data#

# Set the date/time of the model run for yesterday at 00 UTC
yesterday = datetime.utcnow() - timedelta(days=1)
date = datetime.combine(yesterday, time(0))

# Remote access to the dataset from the UCAR site
ds = xr.open_dataset('https://thredds.ucar.edu/thredds/dodsC/grib/NCEP/GFS/'
                     f'Global_0p5deg_ana/GFS_Global_0p5deg_ana_{date:%Y%m%d_%H}00.grib2')

# Set the plot time
plot_time = date + timedelta(hours=0)

# Subset data to be just over the U.S. for plotting purposes and for the plot_time
ds = ds.metpy.sel(lat=slice(70,10), lon=slice(360-140, 360-60))

Perform Calculation#

  1. Do the calculation using MetPy (not too hard).

  2. Add it to the dataarray.

All MetPy Calculations can be found at https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.html

Not all calculations work on grids, yet!

Wind Speed Calculation in MetPy

We can add a new variable based on a simialr one, then update the values based on the calculation. This is easy for wind speed as it is a variant on a single component of the wind.

# Isolate needed variables for calculations
uwnd = ds['u-component_of_wind_isobaric'].metpy.sel(time=plot_time)
vwnd = ds['v-component_of_wind_isobaric'].metpy.sel(time=plot_time)

# Calculate Wind Speed, store in Dataset
ds['wind_speed'] = mpcalc.wind_speed(uwnd, vwnd)

Plot Data#

# Set attributes for plotting contours
cfill = declarative.FilledContourPlot()
cfill.data = ds
cfill.field = 'wind_speed'
cfill.level = 300 * units.hPa
cfill.time = None # We subset for time already
cfill.contours = list(range(10, 201, 20))
cfill.colormap = 'BuPu'
cfill.colorbar = 'horizontal'
cfill.plot_units = 'knot'

cntr2 = declarative.ContourPlot()
cntr2.data = ds
cntr2.field = 'Geopotential_height_isobaric'
cntr2.level = 300 * units.hPa
cntr2.time = plot_time
cntr2.contours = list(range(0, 10000, 120))
cntr2.linecolor = 'black'
cntr2.linestyle = 'solid'
cntr2.clabels = True
cntr2.smooth_field = 4

# Set the attributes for the map
# and put the contours on the map
panel = declarative.MapPanel()
panel.area = [-125, -74, 22, 52]
panel.projection = 'lcc'
panel.layers = ['states', 'coastline', 'borders']
panel.title = f'{cfill.level.m}-hPa Heights and Wind Speed at {plot_time}'
panel.plots = [cfill, cntr2]

# Set the attributes for the panel
# and put the panel in the figure
pc = declarative.PanelContainer()
pc.size = (15, 15)
pc.panels = [panel]

# Show the figure
pc.show()
../../_images/f7e96d12ac2ee673d12766457063589b942d028bfd2e6597a3af99e9c15d8bcb.png