Relative Vorticity Calculation

19.11. Relative Vorticity Calculation#

This notebook demonstrates computing relative vorticity, then plotting it using color-filled contours.

Import Packages#

from datetime import datetime, timedelta, time

import metpy.calc as mpcalc
from metpy.plots import declarative
from metpy.units import units
import xarray as xr

Get Data#

# Set the date/time of the model run
yesterday = datetime.utcnow() - timedelta(days=1)
model_run_time = datetime.combine(yesterday, time(0))

# Remote access to the dataset from the UCAR site
ds = xr.open_dataset('https://thredds.ucar.edu/thredds/dodsC/grib'
                     f'/NCEP/GFS/Global_onedeg/GFS_Global_onedeg_'
                     f'{model_run_time:%Y%m%d}_{model_run_time:%H%M}.grib2')

# Subset data to be just over the U.S. for plotting purposes
ds = ds.sel(lat=slice(70,10), lon=slice(360-150, 360-55))

Calculation#

  1. Pull out necessary variables from dataset.

  2. Do the calculation using MetPy (not too hard).

  3. Add it to the dataarray.

All MetPy Calculations can be found at https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.html

Note

Not all calculations work on grids, yet!

(19.2)#\[\begin{align} \text{Relative Vorticity} = \zeta & = \frac{\Delta V}{\Delta x} - \frac{\Delta U}{\Delta y} \\ \end{align}\]

MetPy Relative Vorticity Calculation

# Select Level and Time
level = 500 * units.hPa
plot_time = model_run_time + timedelta(hours=0)

# Isolate needed variables
uwnd = ds['u-component_of_wind_isobaric'].metpy.sel(vertical=level, time=plot_time)
vwnd = ds['v-component_of_wind_isobaric'].metpy.sel(vertical=level, time=plot_time)

# Compute relative vorticity and store in Dataset
ds['relative_vorticity'] = mpcalc.vorticity(uwnd, vwnd)

Plot Relative Vorticity#

In addition to plotting our newly calculated relative vorticity variable, we’ll smooth the Geopotential Hieghts using the smooth_field attribute.

# Set attributes for plotting contours
cfill = declarative.FilledContourPlot()
cfill.data = ds
cfill.field = 'relative_vorticity'
cfill.level = None
cfill.time = None
cfill.contours = list(range(-40, 41, 2))
cfill.colormap = 'PuOr_r'
cfill.colorbar = 'horizontal'
cfill.scale = 1e5

cntr2 = declarative.ContourPlot()
cntr2.data = ds
cntr2.field = 'Geopotential_height_isobaric'
cntr2.level = 500 * units.hPa
cntr2.time = plot_time
cntr2.contours = list(range(0, 10000, 60))
cntr2.linecolor = 'black'
cntr2.linestyle = 'solid'
cntr2.clabels = True
cntr2.smooth_field = 2

barbs = declarative.BarbPlot()
barbs.data = ds
barbs.time = plot_time
barbs.field = ['u-component_of_wind_isobaric', 'v-component_of_wind_isobaric']
barbs.level = level
barbs.skip = (3, 3)
barbs.plot_units = 'knot'

# Set the attributes for the map
# and put the contours on the map
panel = declarative.MapPanel()
panel.area = [-125, -74, 20, 55]
panel.projection = 'lcc'
panel.layers = ['states', 'coastline', 'borders']
panel.title = f'{cntr2.level.m}-hPa Heights and Wind Speed Valid at {plot_time}'
panel.plots = [cfill, cntr2, barbs]

# Set the attributes for the panel
# and put the panel in the figure
pc = declarative.PanelContainer()
pc.size = (15, 15)
pc.panels = [panel]

# Show the figure
pc.show()
../../_images/e0d8391fe14142737b87ada48fa73bffc5cad571ba279eb3b51b3e0e6a0519db.png